Identifying founding haplotypes reveals the history of the selfer, Capsella rubella.

Yaniv Brandvain **UC Davis**

Khaled M. Hazzouri **U.** Toronto

Tanja Slotte Uppsala U.

Stephen I. Wright **U.** Toronto

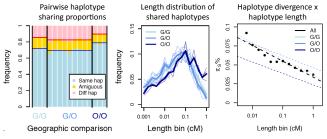
Graham Coop UC Davis

Background:

- Although many plants are outcrossing, the transition from selfing to outcrossing is one of the most common in flowering plants.
- Capsella rubella (selfing) and C. grandiflora (outcrossing) are less than 100 kya diverged 1,2,3 , providing a model of this transition.
- We identify the haplotypes that founded C. rubella to illuminate this transition.

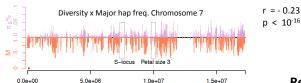
Species	C. rubella	C. grandiflora
Mating Syst.	Predominantly selfing	Obligate outcrossing
Distribution	N. Africa, Mid. East, Europe, S. America	Greece, Italy, Albania
Syn. Diversity ⁴	0.4 %	1.8 %
π_N / π_S^4	0.173	0.144
Tajima's D _{syn} ⁴	0.42	-0.19

Questions:


- When did C. rubella originate?
- How many chromosomes founded C. rubella?
- What is the effective population size of C. rubella?
- Is there evidence for recent growth in C. rubella?
- How has C. rubella spread across the world?

Data: RNA Seq aligned to C. rubella reference⁴.

- 6 C. rubella [from Greece (3) Algeria (1), Italy (1) & Argentina (1)].
- 5 C. grandiflora [From Greece].


Patterns of haplotype sharing:

- Using C. grandiflora polymorphism, we place C. rubella samples on alternative founding haplotypes.
- Diversity between \bar{C} . rubella samples, $\pi_{Cr} = (1-p_0) \pi_{diff hap} + p_0 \pi_{same hap}$ where p_0 = prob. that two samples reside on the same founding haplotype.
- Assuming no divergence within haplotypes, and divergence between haplotypes = interspecific divergence, $p_0 \approx 0.8$.

- Two samples reside on the same haplotype for ≈ 80% of their genome.
- Out of Greece [O] samples reside on the same hap. more often and for longer than comparisons within Greece [G] or across geog. Comparisons.
- From haplotype length x divergence, we estimate a 6% outcrossing rate.


Genome-wide, π_s decreases with major hap. freq.

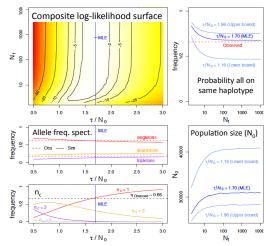
Summary: comparing within vs. between haplotypes

Haplotype	Same	Different
Syn. Diversity	0.05 %	2.22 %
π_N / π_S	.438	.139
AFS [Greece]	Slight excess of singletons	
AFS [Out-of-Greece]	Larger excess of singletons	Excess of common alleles

Conceptual model:

Inference:

Samples –


C. grandiflora C. rubella Observed (Four exchangeable samples: 3 Greek, 1 Italian).

Probability all reside on the same haplotype.

Simulated (Four samples under the model above).

Obs. in sims: # founding chromosomes (the variable, $N_{\rm f}$) and # lineages surviving to bottleneck (n_c).

Allele freq. spectrum when all on the same haplotype. Obs. in sims: Distribution of coalescence times.

Conclusions:

Question	Answer
# founding chroms (N _f)	Potentially many (range 3 : ∞, MLE =750)
# effective chroms (N ₀)	25,000 : 48,000 (MLE = 31,000)
Founding time (τ)	48 : 52 kya (MLE = 51 kya)
What is the	No recent growth in Greece
demographic history of	Evidence for 'Out-of-Greece' event
C. rubella?	Structure and/or recent growth Out-of-Greece

References

- 1) Foxe et al. 2009. PNAS 106: 5241 5245. 2) Guo et al. 2009. PNAS 106: 5246 5251. 3) St. Onge, et al, 2011. Molecular Ecology 20: 3306–20.
- 4) Capsella Genome Consortium. The Capsella rubella genome provides insights into the causes and consequences of mating system evolution. In prep