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Motivation

• Spatially heterogeneous selection
‣ Certain alleles maladaptive in particular environments or 

genomic backgrounds

‣ Local adaptation in the face of (strong) gene flow

• Effective reduction in gene flow
‣ At closely linked neutral sites (e.g. Petry 1983) 

‣ At other selected sites (e.g. Bürger & Akerman 2011)

• Heterogeneity in divergence along the genome
‣ Teeter et al. (2008), Carneiro et al. (2009), Geraldes et al. 

(2011); review: Nachman & Payseur (2012)



Effective migration rate

• Petry (1983), Bengtsson (1985), and many more:
‣ Effective reduction in gene flow due to selection against 

maladapted alleles

• Nordborg (1997), Charlesworth et al. (1997)
‣ Theoretical predictions: effect on pairwise coalescent times 

within and between populations of linkage to a migration–
selection polymorphism

‣ Advocating use of absolute divergence rather than FST
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Effective migration rate

• Petry (1983), Bengtsson (1985), and many more:
‣ Effective reduction in gene flow due to selection against 

maladapted alleles

• Nordborg (1997), Charlesworth et al. (1997):
‣ Effect on pairwise coalescent times within and between 

populations of linkage to a migration–selection 
polymorphism
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Brandvain, Kenney et al. 2014 bioRxiv http://dx.doi.org/10.1101/000109 | Photos: http://www.nsf.gov [06/22/2014; modified]

Example 1: Introgression of 
Mimulus nasutus into M. guttatus

Evidence for selection
against gene flow into the

‘wrong’ genomic background?

M. nasutus
Nas

M. guttatus
CAC6G

J. Willis J. Willis

http://www.nsf.gov
http://www.nsf.gov


Jessica P. Selby (personal communication)

Example 2: Local adaptation to 
serpentine soil in M. guttatus

Serpentine seedlings
on

serpentine soil

Non-serpentine seedlings
on

serpentine soil

J. P. Selby

J. P. Selby

S. AeschbacherS. Aeschbacher

C.  Kohler

serpentine

off serpentine
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Data obtained from Willis Lab (Duke Univ.); www.phytozome.org, www.mimulusevolution.org

Maladaptive gene flow into 
serpentine patches in M. guttatus?

Evidence for selection
against maladapted 

immigrants from non-
serpentine patches?

http://www.phytozome.org
http://www.phytozome.org
http://www.mimulusevolution.org
http://www.mimulusevolution.org
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Between-population coalescent 
time at sites linked to selection
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Between-population coalescent 
time at sites linked to selection

Trajectory of a closely linked pair of lineages
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A genomic perspective: borrowing 
strength across multiple sites
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A genomic perspective: borrowing 
strength across multiple sites

Distribution of distances
between neutral and selected site 

Selection coefficient Per-base pair
recombination rate

Rate at which selected
loci occur along the genome
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Analytical prediction versus 
individual-based simulations

• Simulated 5 independent chromosomes (20 Mb), each with a 
given recombination rate using SLiM (Messer 2013; modified)

• One migration–selection polymorphism per chromosome
• 10 replications
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Age of mutation:

Ne = 1000
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• Effective migration rate at a neutral site linked to multiple migration–
selection polymorphisms (Aeschbacher & Bürger 2014)

More than one selected locus – 
BUT forget ages of mutations
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• Effective migration rate at a neutral site linked to multiple migration–
selection polymorphisms (Aeschbacher & Bürger 2014)

More than one selected locus – 
BUT forget ages of mutations
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Simulations
Analytical prediction

Mean selection coeff.:
        0.05
        0.025
        0.0125

• 10 selected loci per chromosome

• Chromosomes of length 100 Mb

• 5 recombination strata

• 24 replicates

• Mutation rate of 10-9

• SLiM (Messer 2013; modified)
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Multilocus me: exponential decay as a 
function of a compound parameter 
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Multilocus me: exponential decay as a 
function of a compound parameter 

me ⇡ me2⌘{ln(K)+�}
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Application: M. guttatus on and
off serpentine soil

REM (McLaughlin)
serpentine

SOD (Napa)
non-serpentine

N

50 km
30 mi

• Genome-wide sequence data from 
Willis Lab (Duke Univ.)

• Aligned to M. guttatus reference v. 2.0

• Called SNPs, recorded informative sites

• Filtered out low coverage, tested for 
constant Ti/Tv ratio

• Physical linkage map (Lex Flagel, Yaniv 
Brandvain)

• Binned data into windows of 100 kb

maps.google.com [06/17/2014] S. Aeschbacher

http://www.phytozome.org
http://www.phytozome.org
http://www.mimulusevolution.org
http://www.mimulusevolution.org


Application: Least-squares fit to
M. guttatus genomic data
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Application: Least-squares fit to
M. guttatus genomic data
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Application: Least-squares fit to
M. guttatus genomic data
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REM (serp.) x SOD (non-serp.)

log10 of recombination rate per base pair

ln
 o

f π
B

Omitting very low per-base pair recombination 
rates (<10–7.5) and assuming u = 10–8:

� lnm = 7.53± 0.047

2⌫BPā {ln(K) + �} = 1.55⇥ 10�6 ± 6.3⇥ 10�8

m ⇡ 5.4⇥ 10�4

R2 = 0.22

Example:

K = 200

Average dist. = 100 kb

ā ⇡ 0.01



Summary

• Selection against gene flow produces a unique 
genomic pattern
‣ Negative correlation between ‘absolute’ genetic divergence 

and local recombination rate

• Identified a compound parameter that, together with 
the length of the genome, quantifies the per-base 
pair effect of selection against gene flow

• Quantified the aggregate strength of selection 
against migration to serpentine patches in M. guttatus

⌘ = ā⌫BP/rBP



Trade-off

Cannot 
identify 

individual loci 
contributing 

to local 
adaptation



Trade-off

Cannot 
identify 

individual loci 
contributing 

to local 
adaptation

Avoided issues 
with outlier tests

• No false positives
• Robust against demography
• Distinguish between modes 

of selection
• Borrowing strength across 

multiple loci contributing 
(weakly) to local adaptation



Outlook

• Allow for migration in both directions

• Account for interplay among loci under selection

• Incorporate recent local sweeps and background 
selection

• Analyse more pairs of Mimulus populations on and 
off serpentine
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Thank you!

Coop Lab, UC Davis:
• Graham Coop
• Chenling Xu

Willis Lab, Duke Univ.:
• Jessica P. Selby
• John Willis

Various:
• Yaniv Brandvain (Univ. of Minnesota)
• Lex Flagel, Uffe Hellsten
• Kevin Wright (Harvard University)
• Michael Nachman, Megan Phifer–Rixey

(UC Berkeley)

Photo: D. Begun

Kristin Alisa Gideon Jeremy Graham

mailto:saeschbacher@ucdavis.edu
mailto:saeschbacher@ucdavis.edu
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Divergence and recombination
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Confirming the existence of a 
compound parameter
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Why is FST problematic?

• [Formula of Fst: ratio of two measures of diversity]

• [Illustration: simulation results under local 
adaptation and background selection, yielding the 
same pattern of Fst against rec. rate]

• [Illustration: show how πB distinguishes between the 
two scenarios]

• [I might not have time for this long version, but just 
mention it at the end of the previous slide.]



Application: Least-squares fit to
M. guttatus genomic data
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