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Convergent adaptation

Adaptation across similar environments
Many levels of convergent adaptation:

Phenotypic level across Phenotypic level
Species within species
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Modes of genotypic convergent adaptation

Multiple populations respond to similar environmental
pressure using same genes
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Multiple populations respond to similar environmental
pressure using same genes

What is the basis of this adaptation?
1. Independent mutations in isolated populations

2. Single origin with gene flow
3. Shared ancestral standing variation




How can we distinguish modes of
convergent adaptation using population
genomic data?

1. Model allele frequencies around selected site
* Null model
e Variance within populations experiencing selection
* (Covariance between selected populations

2. Composite-likelihood approach to distinguish between
these models
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We can model population allele frequencies as multivariate normal
T~ N(el, €(1 —€)F)

Cavalli-Sforza et al., 1964; Nicholson et al., 2002;
Weir and Hill, 2002; Coop et al., 2010; Samanta et al., 2009
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Probabillity a pair of
ineages coalesce during
the selective sweep

JH Gillespie, Genetics (2000)



Selective sweeps increase probabllity of coalescing

y* = probability two lineages coalesce during the sweep =
probability neither recombine off of the beneficial backgrouna
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Selective sweeps increase probabllity of coalescing
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1. Independent sweep model
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2. Shared ancestral standing variation
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INnference method

Given location of selected site and model, can calculate
probability of observed neutral allele frequencies a given
distance from selected site.
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INnference method

Given location of selected site and model, can calculate
probability of observed neutral allele frequencies a given
distance from selected site.
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Kim and Stephan, 2002; Nielsen et al., 2005; Chen et al., 2010; Racimo, 2015



Application to data:

Mimulus guttatus adaptation to copper on mine tailings in California
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Application to data:

Mimulus guttatus adaptation to copper on mine tailings in California
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Log-likelihood ratio (Model/neutral)
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Log-likelihood
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Log-likelihood

Under standing variation at most likely selected site
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Conclusions

1. Can define models for modes of convergent adaptation
for multiple populations with arbitrary relationships

2. Applied inference method to Mimulus guttatus copper

tolerance data
e Can apply to a wide range of other datasets



Thank you!

The Coop Lab
Jeremy Berg, Gideon Bradburd, Graham Coop, Alisa Sedghifar, Chenling Xu,
lvan Juric, Simon Aeschbacher, Vince Buffalo






Application to data:

Mimulus guttatus adaptation to copper on mine tailings in California

GENETIC DIVERSITY IN TOP “SWEEP REGION”.
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