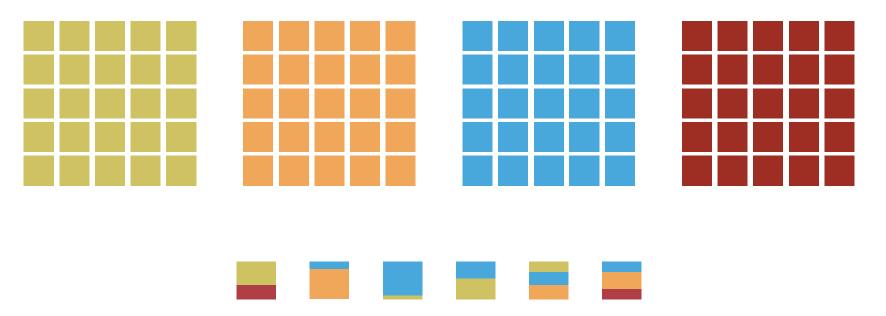
Reference Populations (known or unknown)



Identify **ancestry proportions** for individuals with **admixed** ancestry

Approaches: Structure (MCMC, Bayesian)
Or ADMIXTURE (quadratic programming)

Genetic Structure of Human Populations

Noah A. Rosenberg, 1* Jonathan K. Pritchard, 2 James L. Weber, 3
Howard M. Cann, 4 Kenneth K. Kidd, 5 Lev A. Zhivotovsky, 6
Marcus W. Feldman 7

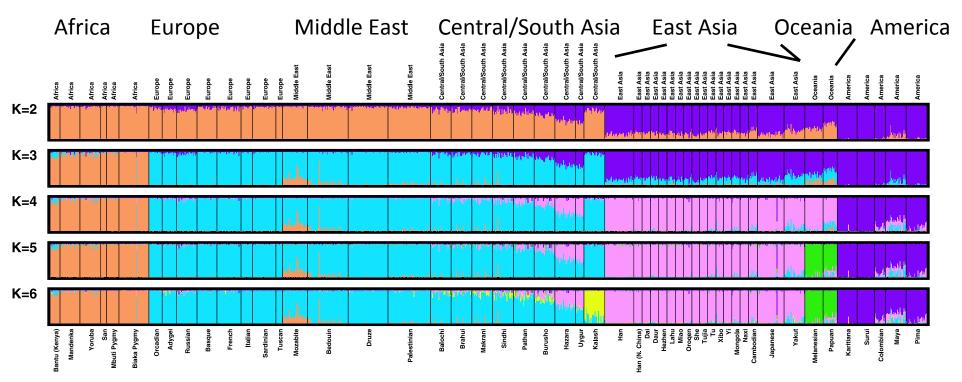
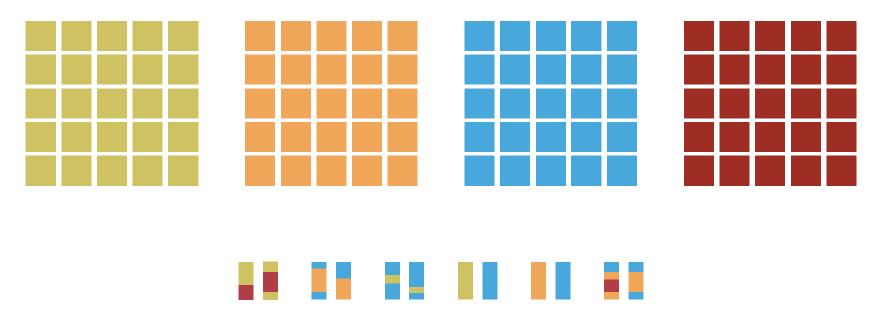


Fig. 1. Estimated population structure. Each individual is represented by a thin vertical line, which is partitioned into K colored segments that represent the individual's estimated membership fractions in K clusters. Black lines separate individuals of different populations. Populations are labeled below the figure, with their regional affiliations above it. Ten *structure* runs at each

K produced nearly identical individual membership coefficients, having pairwise similarity coefficients above 0.97, with the exceptions of comparisons involving four runs at K=3 that separated East Asia instead of Eurasia, and one run at K=6 that separated Karitiana instead of Kalash. The figure shown for a given K is based on the highest probability run at that K.

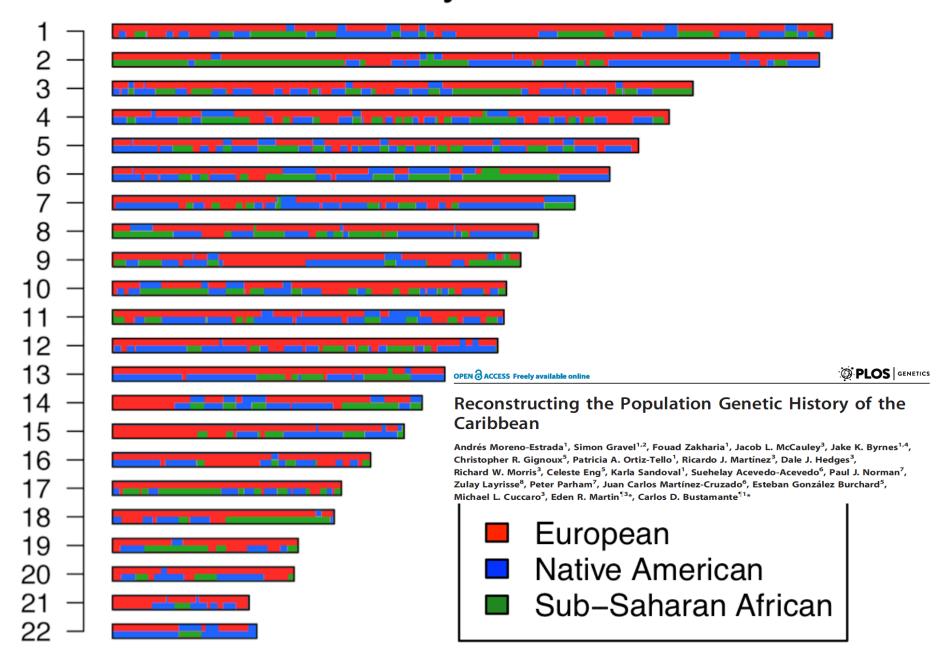
Reference Populations



Identify origins of **chromosomal segments** in individuals of **admixed** ancestry

Approaches: Based on Hidden Markov Models

Local ancestry



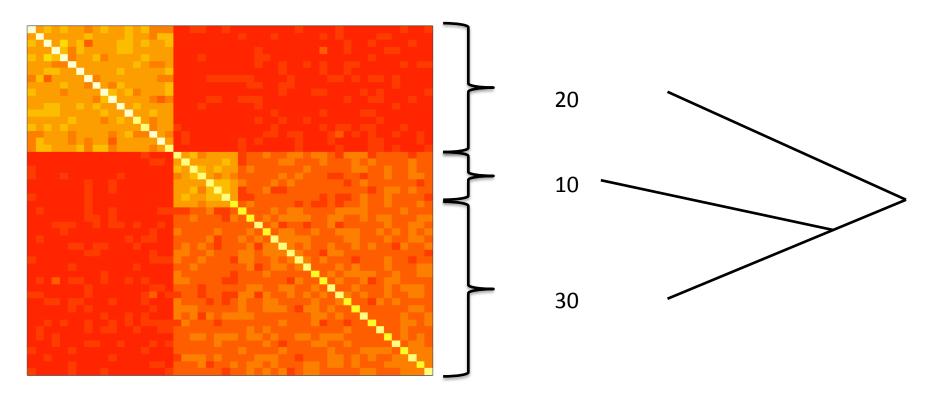
Principal components analysis

Example

Section 1.7.2 of notes

(Simulated data, N=50 individuals, L=1000 SNPs)

Relatedness matrix R



ith and jth entry =average over loci (I) of $(X_{li} - \overline{X_l})(X_{lj} - \overline{X_l})$ Where X_l is mean freq. of the Ith locus.

Modified from slide by Gavin Band

Principal components analysis Example

(Simulated data, 50 individuals, 1000 SNPs)

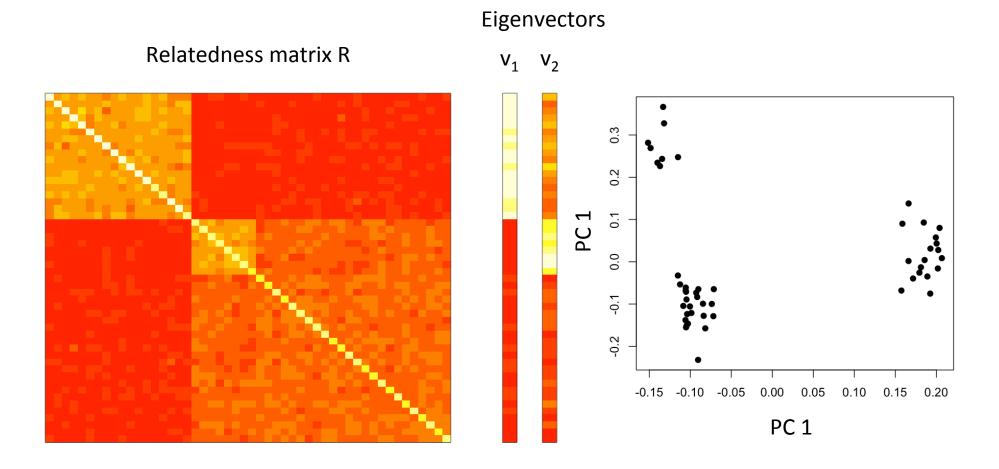
Principal components

Eigen-vectors)

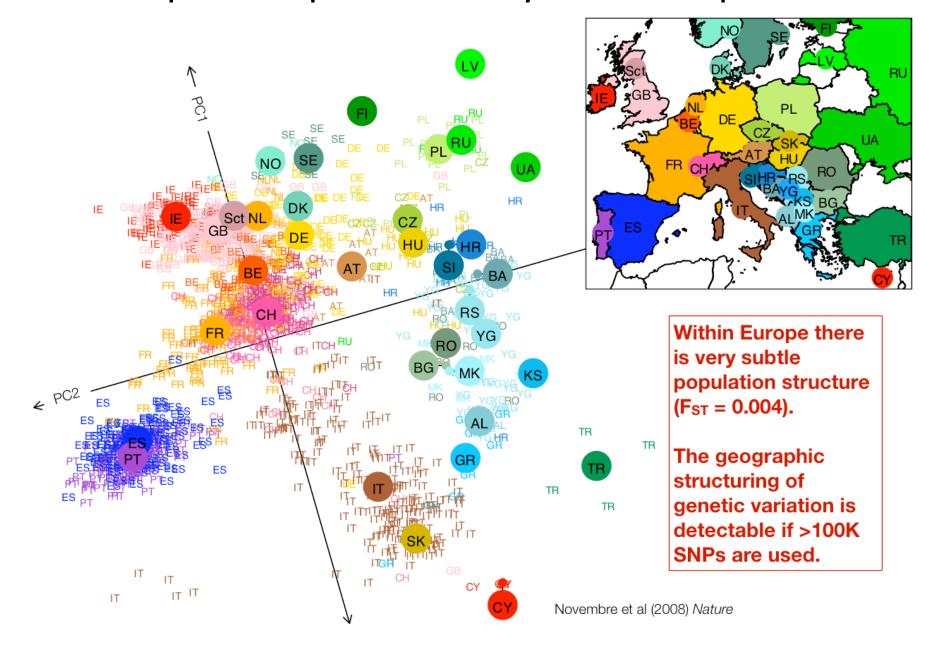
Relatedness matrix R v_1 v_2

Principal components analysis Example

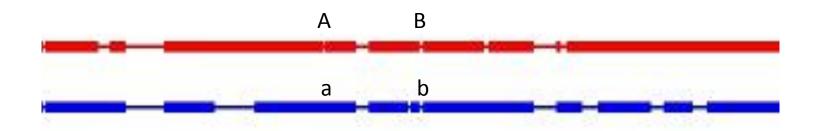
(Simulated data, 50 individuals, 1000 SNPs)



Principal Component Analysis of Europeans

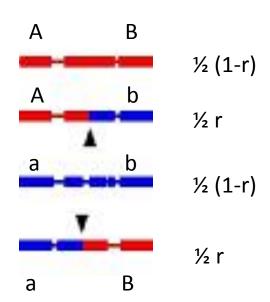


Recombination and Linkage Disequilibrium (LD)



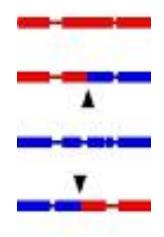
r = recombination fraction probability of an odd Number of crossovers occur Between our markers

$$0 < r < \frac{1}{2}$$



<u>Linkage disequilibrium</u>: The non-random association of alleles at different sites in the genome in a population.

If independent the expected



$$p_{AB}$$
 = frequency of AB

frequency of gametes (haplotypes)

$$p_{ab}$$
 = frequency of ab

$$p_A X p_B$$

$$p_{Ab}$$
 = frequency of Ab

$$p_a X p_b$$

$$p_A X p_b$$

$$p_{aB}$$
 = frequency of aB

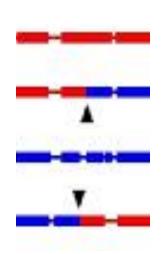
$$p_a X p_B$$

Define "D"

$$D_{AB} = p_{AB} - p_A p_B$$

The covariance of A and B.

<u>Linkage disequilibrium</u>: The non-random association of alleles at different sites in the genome.



$$D_{AB} = p_{AB} - p_A p_B$$

$$D_{AB} = -D_{Ab}$$

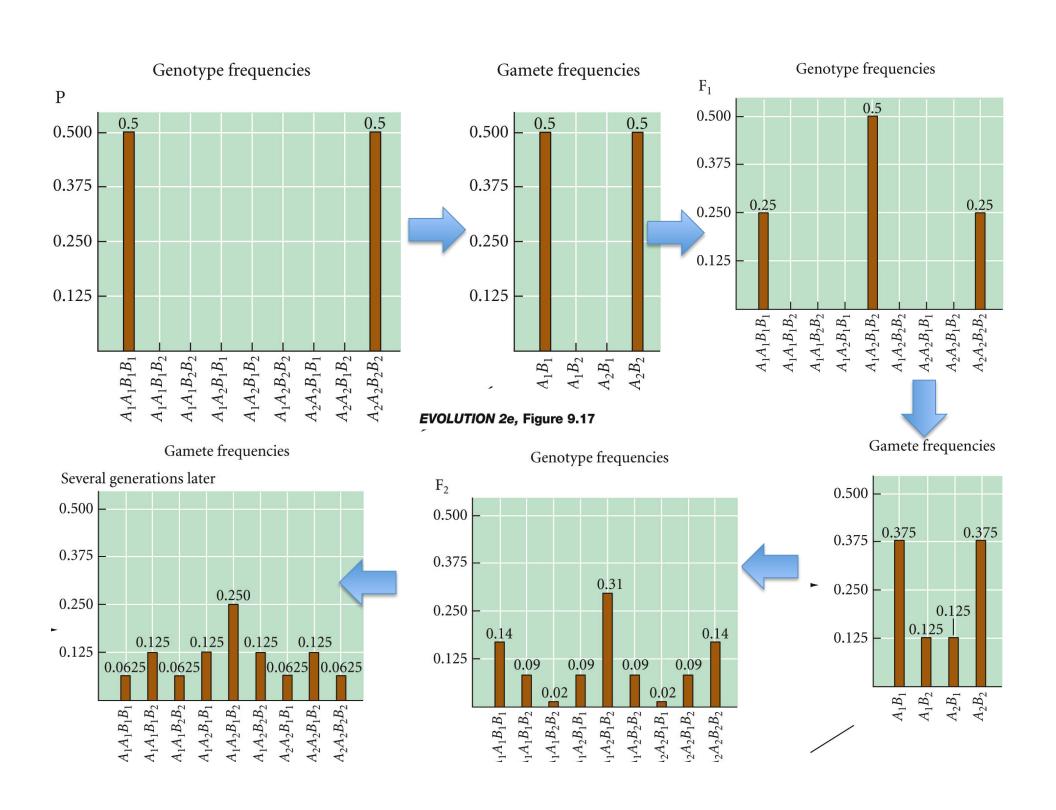
 $D_{AB} = D_{ab}$ and $D_{Ab} = D_{aB}$

(so, knowing D_{AB} is enough - call this "D")

If O = E, then D = 0

If D >0 (or D<0) then there is "linkage disequilibrium (LD)"

Note: you can also write $p_{AB} = p_A p_B + D$



Decay of LD in a very large boring randomly mating population

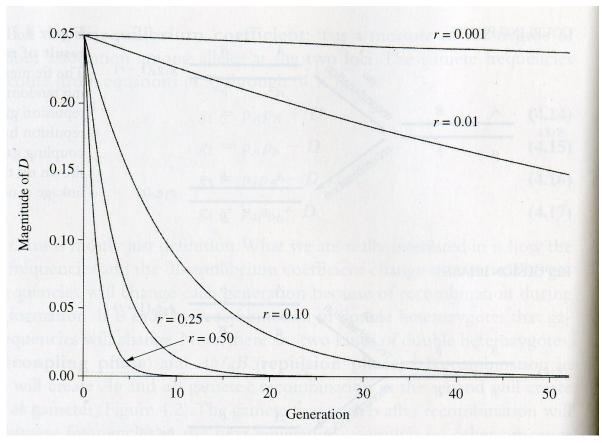
$$D_{t} = (1 - r)^{t} D_{o}$$

With inbreeding coefficient f replace r with r(1-f)

linkage disequilibrium

How does LD change over time due to recombination?

$$D_t = (1 - r)^t D_o$$



Note: more distant markers recombine more!

So eventually recombination leads to D=0.

Even with free recombination (r=0.5), it isnt instantaneous